Patient dosimetry


X-ray imaging

Factors that increase dose:

  • Beam properties
    • Higher tube current (mA) and exposure time (s)
    • Wider collimation (reduces scatter and irradiated area)
    • Larger field of view (FOV)
    • Higher kVp (however, higher kVp produces more penetrating beam which allows a lower mA to be used which may end up reducing patient dose)
  • Scanner properties
    • No filtration
    • Use of a grid
    • Reduced receptor sensitivity
  • Patient properties
    • Closer to focal spot (x-ray source)
    • Larger patient habitus (larger skin surface to absorb maximum dose)

Fluoroscopy

Factors that increase dose:

  • Beam properties
    • Lower kVp (a less penetrating beam means more radiation absorbed, particularly on skin)
    • Continuous (vs pulsed)
    • Using a higher dose level setting
    • Larger area of collimation
    • Keeping x-ray tube over same anatomical area (maximum skin dose can be reduced by rotating and penetrating patient from different angles, called "dose spreading")
  • Scanner properties
    • Use of a grid
    • Increased electrical magnification
    • Increased geometric magnification (i.e. moving patient closer to source)
  • Patient properties
    • Larger patient habitus (as for x-ray imaging)

CT imaging

Factors that increase dose:

  • Beam properties
    • Higher tube current (mA)
    • Longer exposure time
    • Not using mA modulation
    • Wider collimation (however, if collimation too small system will compensate for reduced signal by increasing mAs / kVp)
  • Scanner properties
    • Decreasing pitch (normally dose and pitch inversely proportional. However, some scanners automatically correct for pitch by maintaining same 
    • Use of noise reduction algorithm allows lower dose to be used
  • Patient properties
    • Smaller patient (more x-rays will penetrate to the centre and deposit a higher dose N.B. a larger patient will receive more total x-rays but dose is measured per unit mass)

Nuclear imaging

Factors that increase dose:

  • Increased amount of injected radioactivity

 

Download now on Kindle
Written by radiologists, for radiologists with plenty of easy-to-follow diagrams to explain complicated concepts. An excellent resource for radiology physics revision.

 

FRCR Physics Notes: Beautiful revision notes for the First FRCR Physics exam

Note: Not available in all regions.

Next chapter: Appendix


  Send us your feedback

 

Download FRCR Physics Notes on Kindle and follow us for the latest developments and updates via social media.

Buy online
Available on Amazon

 

Follow on Facebook
 

 

Join 8000+ subscribers

Please note: Your email address will never be shared with any 3rd parties. It will only be used for Radiology Cafe communications. Emails are sent less than once a month on average. Read our Privacy policy for more details.