Spatial encoding

Unlike in CT and plain films in which localisation of the signal is simple (an x-ray beam travels through the material and where it hits the receptor is the physical location of what it has passed through) MRI is much more complicated. With MRI the signal is localised in the 3D space by manipulating the magnetic properties of the nuclei in a predictable way. The signals are then returned with a particular frequency and phase and these are slotted into their respective locations. The brightness of the pixel is the amplitude of the signal returned.

The key concept of spatial encoding is the use of gradients.


Spatial encoding


There are three steps involved in identifying where in a 3D location a signal is arising from:

  1. Slice selected along z-axis
  2. Segment of slice along x-axis selected by frequency encoding
  3. Part of segment along y-axis selected by phase encoding


Spatial localisation


Out now in paperback and on Kindle
Written by radiologists, for radiologists with plenty of easy-to-follow diagrams to explain complicated concepts. An excellent resource for radiology physics revision.


FRCR Physics Notes: Medical imaging physics for the First FRCR examination

Note: Not available in all regions.

Next page: Slice selection

  Send us your feedback


Buy FRCR Physics Notes in paperback or on Kindle and follow us for the latest developments and updates via social media.

Buy online
Available on Amazon


Follow on Facebook


Join 10k+ subscribers

Please note: Your email address will never be shared with any 3rd parties. It will only be used for Radiology Cafe communications. Emails are sent less than once a month on average. Read our Privacy policy for more details.